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The stability of & monatomic cubic face-centered crystal lattice
during unilatersl compression axd extension is discussed. It is
skown that the collapse of a lsttice during compression and extension
hes an essentielly distinct and definite character and that the lattice
resists compression considersbly less then it resists ~xtension.

. 1. 1t 1s well known that residual inelastic strmiis in mecroscopic solids SR :
S ' are a gsecondary result of the collepse of micToecopic orystal lattices in RS *
' certain minute regions, which appear initially es regiomns of overstrain.
Stepanov, for example, showed exparimcntally that the yhenomonon of the collapse
in solids corsicts of two phases: {1} t.e appeaiunce of centers of disintegration
or collapse "nuclei” and (2) the development of these minute nuclei into a
masroscopic formation.

In those regiops serving as collapse nuclei or cemters of disintegration
in solids, stress amd strain evidently can attain lerge values. It can de
assumed that the mechenicsl stabiliiy of these regiona ant the maximm
ino)ngtic deformations attain the same values as those calculated from the
theory of crystal lattices. Insofer as the behavior of thees regioms of
overstrain is determined by ths development of plastic strains and fractures,
it is ensentiali to knov the conditions governing stability in ideal crystal
lattices for various corditions of stress. These comditions shouid Cetoxrmine

* the maximum gtress at which ths lattice can st3ll be elastically deformed
(defining the stabl’ity of the lettice), amd its maximnm elastic deformatians.
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They should 21sy shown bow or lWleal'cryot-l lottice collapses when
stress excoels the maximum peimitted for olastic siress values. OF
course, & theory based on the concept of un ldeal ecrystel lattice can-
not fully explein the dynamice of collapse in a lattice, bui an ides
of the initiel thase of disintegraticn in s collapsing lattice cen be
completely developed.

Because of the rather large elastic strains in the regions
of o.sistraln, deformations naturally cannot be describved dy the
theory of slasticity as based on Hooke's law. Nonlinsar terms can
be introduced into Hooke's lew to describe such strains, as was done
by Murneghen in the case of & comtinuovs medium end by Fuerth for
cubic crystal lattices. These authors suprlemented Hooke's law
with second-order terms relative to components of homogenous straims.
For these protlems, such a gereralization yielde five constants
characterizing the elastic properties of materism., instead of the
4wo in Hooke's law.  However, elastic gtrains in an ldeai lattice
can be go large, e.g., emounting to ons third of the initidl volume,
that calculatioms of only the first-order snd second-order terms, and
the discaxding of third-order terms and above will become baseleas.
The caloulation of 8till hiiher-order terms will lead to new constants
of elasticity in such larg: numbers that their physical significance
and the description of elastic properties of solids will be vague.

It seems more expedient to us, in cases of great stresges amd
gtrains, to use dooke's law, t.e., "linear" relatiopships betwsen
stress components and strain components, taking into acrcount the
dependence of ordinsry cosfficlents of elasticity (according to
Fuerth's first-order coefficlents of elasticity) upon strein or
stress.

From this point of view, the coefficients o. elesticity
lose their significance as charecteristics of the materius itself
end become functions of stress; but with their help we can draw
an ordinary “clessical” picture of the elastic properties of a
golid in a strained state without requiring new coefficierts of
elasticity (seconi-order coefficients and higher).

2, A condition gowverning etability in crystel lattices is
positive free energy, ccrsidered as a quadratic function of the
camponents of unilateral str i of the lattico, preliminarily
deformed by externtl wmiresses. These are representeld by positive
ocoaffiolents of elasticity in the determinant ard ite chief minors.
Bacause the detymminant is of the sixth degree, there will be =
+ctal of eix conditions governing steblity, expresued by ithe
coefficlent of elasticity. £ specifi. physical significaice can be
attacied to each of the conditions governing stability; thersfore
during the collapse of this or that condition the latiice will
collapse in a specific mamner. The nature of the cc’lapse of the
lattice is evidently determined by that comdition governing stablitiy
which 18 the first to collapss. .

3. In the present work we shall coneider the stability of a
monatomic cnbic crystel lattice under monoaxial etress -- unilateral
sompression or extenaion along one of the edges of en elementery nucleus

We shall set the coordinate axes slong the edges of an
elementary lattice cube and set the mtrese along the Z-ex’s so that

X*_—: Y)(=: 0' Zz-———p, )/z=zx=xxy-= a.
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Then the elementsry nuclens tau(ea on the form of a rectangula.r

parallelepipedon and the lat+ice assumss toiragonel symetry, the

lattice will be characterized by.six coefficlents: Cyy, C33, COpy,

Gga C1a, Cp3. With this we obtain the folloving coxﬂitions of
bility:

) y—C >0 Pey +Cla.> 0; Dyt ©a)lra—2 ed>0
Vey >0, 3 gy >0; ¥ cgyd>0 Ve >0 (2

We assume that the enprgy of interaction of two particlee is
expressed Jn the form

~ g2 [k () )

where ¢, 1as the energy of dissocietion of the ¢ 2tomic moleculs; 1]
18 the equilibrium distance in the molecule and » is the distance
between interacting particles.

For numericel caleulations we sssume m,n z G,12. In view of
the . problem's symmetry, ... parsmeters of state can bw selected as the
length a. of the edge perpendicular to strese and the utio e of the
lengtli of the edge, parallel to strwss, to the lengtha.,

In their work Zhdanov and Konusov briefly discussed & method
of calculating the elasticity of a crystal lattice as a function of the
stress upon it, nd set up general formulas for the equation of state
and coeffic.ents of elesticity. The general formules were quite
unwieldy; therefore we shall state here only the simplor formules for
the cese of ‘temperatures neer ebsolute zerc.

The equations of state then will be:

(f) )
Smi2 sz

KG—sf, 7) =plpes

and the coefficients cf elasticity:
tulp,= K {n+ 280 y—(m~+2) 55,7,
aspe=K {in+2)S “”9 (m+2)SEL} —p,
Cothym K {r+2)S 2 = (on +2)S 23,
Ufpem i {n42) 52497~ 0m +2)SL¥), (5)
=gy,

Here €aTCqe -

7= (G,,/a,)"‘, K=(1/20 [nomfn —»n)]yﬁn +3)(n—1,,

S,fp's) =2 z/‘l' albnivien, )t
(7!,1-’- ,,:+az,¢§-)'/2.

X

Sanitized Copy Approved for Release 2011/07/18 : CIA-RDP80-00809A000600231008-7 |



i B e - W N e T, A o : : . :

" Sanitized Copy Approved for Release 2011/07/18 : CIA-RDP80-00809A000600231008-7 *

CONPIENTML ] '50X1-HUI\/I

Ibf'ﬁ/}’%,r Lo the siructuaral soefficien’, equel f’of e face-centered ' R
la“ttice o 44, a,=rn V2. I

) A pomewhat modified method of Born ard Fuerth was used to
calculate the sums. This method requires that the sum's first few
terms, corresponding to the initial Iewars of perticles, be summed
directly and then the remaining terms bs approximstely summed by
integration. Now we take iInto account the first two layers of
particles in the crystal. During intégration relative to the remaining
layers, the limits of integretion, in sontrest to _57 , are determined
fror the values of the corresponding sume for cubic lattices. Such
accuracy in calculating sums proved to be inedeguate only for great
compressive stresses, when the particles of the secomd end third
Jayers began to pley an ldentical role. :

In 194k, we obtained the formulas for the equatisms of state
end coefficionts of elasticity In this problem; we employed them to . :
stuly the temperature relation cf coefficlents of elissticity in lattices, ' ' s
taking into account the two layers of paiticles.

k. 'The equations of :.ate (%) permit estublishing a relation
between the parsmeters of stat: o, &, @ &nd 7. Hero we
confine ourselves to the conelderation of the dependence of & on
strees.

The equations of state for the case of temperatures near
absolute zero give a relation between stress o (in unite ofp,)
and ¢ ag shovn in Figure ) {the continuous curve) As is ovidert
from the grerh, the deformation within the limits 0.8 /1 3
18 the elastic deformation of the lattice; the maximm stresses of
compression end extension cen be defined as the measure of lattice
atability, because beyond the meximum, deformatiom will take place
even for smaller values of strese. We shall conlitionally cell these
stebilitiess the absolute stability at compressicn and the absolute
’ etability at extension; they are respectively equal to 3.3p, and
by 10.5p, , 48 seen in Figuve 1.

The curve in Figure 1 is asymmetrical; the deformation and,
particularly, the resistance of the lattice during extension 1is NS
considerably greater than the deformation and resicteance of the . Crepa

: lattice during compreseion. During extension, the size of the N
5o lattice ircresves considerably, up to 33 percent. and the space batween EEERNIR -
particles in the direction of extension increases still more. The ' S
lattice can be essumsed tc .ollapse because of the weakaning of the . . -
commective forces between particles in the direction of extension. L ﬂ!_,;: :

N During compression *he o1ze of the lattice changes very
1 ~ insigniticantly (up to 0.5 pescent). It i not difficult to see that .
: : this change in distribution of particles leads to essentiel changes in .
) their coordination; nemely, to the transition from a face-centered BT
lattice (&==/ ) to a volume-centered latiice (ot=]f/Z==07/). .
Actually, as cer ha seen in Figure 2, the cubic face-centered lattice
( x==/ ) can ba mogaived as a volumo-centérdd tetragonal lattice with
a ratio of edges (0t=2 ). A volume-centered cubic lattise is obtaiied.
dwring compression of a tetragonal lattice in the direction uf the large
edge to the valuss o 'ws |wad dtwe [/ .

Figure 1 (the continous curve) shows that if this compression -
1o accomplished bty quasi-static means, we obtain a free lattice (ot-_-llt’i,p’o)-
- Brt a cubic volume-centered coordination of particles, as wns shown
by Born and Misre, cannot exist under the gelacted law of interactiom
(3) and the condition of stability G, —¢;3 >0 is not fulfilled. There-
fore during compression a transition from a stable cooxdinetion of .
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particles to an unstable uns iakes ploce, with a surmounting of &

gmall Porce (eneray) barrier. The natwre of Yne collapse in & crystal e
lattice during extension Dproves to be very dissimilar from the case for : Ji. .
¢ *wpression. '

Fuerth solved the problem of unilatersl extension of a cuble
fese-centersd latiice at & temperature of abrolute zero. Figure 1 shows
the dotted curve obtained from f'ormula 33 of his work. When Fuerth
calculated tkis curve, he discarded the factor 2, so that the figures
in colwrms 2 ard 3 of Fuerth's Table 1 must be doudled. In our Figure 1
4 . this eadjustment was made. The slight separation of the curves in )
R 3 the right portion of Figure 1 is explained sumewhat differently by omr - B B
‘ .calculation of sums, which we have already menticned. In the left portion :
of the grarh the separation is Coneidersble ard significant, since
; gccording to Fuerth's data the face-centered cubic lattice, during com-
ol rregéion; does not transform Into a fres cubic volums-centered lattice,
&8s ahonld happen.

According to the data of Born and Misre on the problem of .
central forces expressed in the form of e binomial {3), the volume-
centered cubic. lattice will be atable if ¥<Pand umstable if 772 7
The conpideration of: the first cese should resuit in an essentially
difrerent velation of  (et), from that given iu Figure 1. During
compre. sion of & face-centered lattice & stable volyms-centered lattice
should occur; that 1g, the tamgent of the curve pwat the ‘point o(-=1/'/é
should be positive and hence the curve should lave the form as shown Y e . §
in Figure 3, Deformation dus to compression acccrding to the curve P E A
in Figure 3, should lead not to simple ccllapse in tae cubis face-
centered crystal lattice, but to its polymorphous transformation
. into a volume-centered lattice.

: Thus the problem of central forces can distinguish two types of
- face-centered cubic 1-%%iices; lattices of one type collapse ducring
unilaterel compression and lattices of the other type unlergo poly-
morphous trensformation.

Peng and Pover stuiied the stability of a momatomic face-

centered cubic lattice (m, n, =6, 12) relative to extension (and N

compression) along the mejor diagonel of a cube. They established R .

that during extemsion, khe face-centered lattice passes into a . T

free aimple lattice and thet with further extension the free simple
i lattico pesses into a volume-centered cne. Considering the lattice

energy as a function of the parameter of extension X, they furiler

fourd thet face-centered and volume-centered lattices are stable

because they correspond to minirum enprgy and that a simple lattice

is wnstable becavse it corresponds to raximum energy. As a matter

of fact, the energy surface at the point of the volume-centered

lattice forms & saddle -- a minimum relative to the parsmeter of

Peng and Power and a maximm relative to other perameters and in . o :
~ particular to our parsmeter oK ; therefore, such a lattice for the R ’ .
: law of forces given above 1s unstable. . . B N’

&. We ehall now irvestigate the conditions of stability (2). .

a. 3)Gi—€nDG5) Gy 204,50, AL! thess. conditions have
a tendency towards disrupiion during extension. This tendency is
lacking or weakly expressed during -ompression. Figure 4 shows
the left parts of conditioms 3), 5), 6), for TmsO. The chenge in
: myssure vas taken in the range determined by the equations of state,

- 5.
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The expressicn Cyy - €., ecuals the cosfficlent of chear .
in the plene of the “face of a rhomgﬁc Acdachahedron”} € - C1o during i
extension decreases to zero at p/p,,--"—S.,;'* and thereupon becomes ¢
negative. Consequently, during extensicn the lettice decroasss 1ta
resistance to elasti: shesr in the plane c¢f the fece of the rhombic
dodecahedron and at p/ps= 8.5 loses stability relative to these shears.
The stress at which C337 - 012 becomes zero, we shell conditionally call
the "third" stabdbility of ths lattice.

. The coefficient 033 characterizes the resistance of the
lattics to extension Larallel t0 the basic stress. By increasing the ) -
oxtension strass the coefficlent decreases, but remains positive for ;
all valuss of pressure, andl becomese zero &t pP==p mix. Thus &t T= 0
the "fifth" stability agreus with the ebsolute stability of the lattice.
The coefficient Cj) is characterized by resistance to shear in ths plane
of the face of the cabe; perpendicular to the applied stress p. As can .
e seen in Figure %, the lattice does not lose stability relative to : = P
guch shear, although its resistance can be greatly weekensd. ’

b. TVC4e> 0 . “is comiition of stebility hee a tendency to
aisruption during compress:.:: of the lattice. The left pert of
this copdition for T == 0° 18 repressnted in Figure k.

Coefficient C (3 cheractierizes resistance to shear in the
plane of the face of the cube, parallel to the busic stress p. The
graph clearly shows that the lattice remains stable relative to

- theee shears, although the resistance to such shears during the
prerence of “basic” compression ic woakened .

c. 1) (Cu+C 1) G2 23>0, Thie condition has o strong
tendency toward disruption in case of great compressive end extensional
stressun.

d. 2) €€ 20,4)6, 00, The left parts of tuese conditians
of stebility, for all velues of pressure, remain quite large. Thexrefore,
their investigation is not sssontial..

Thus in¢estigations of conditions of stahility yleld the following
conclusions:
LY

) Extoneion. - — During extension the lattice collapses besause of
shagrs in the plane of the face of & rhombic dodecahedron; the corre~
. ing "third" stwoility appears as the lowest of all ‘the stabilities
' of the lattice. : )

0y

' Compression -- In the case of compression the accuracy of
‘ caleylation (ascuracy of calc.lating sums) proved to be inadequate. There-~

fore no definite conclusicns can be made concerning the character of
lattice collapss during compreseion. Because the first condition is ;
disrupted during compression in the limits of abiolute stability, - ) B
collapse -can be assumed to take place by the uppearzuce of a complex & ‘
coopdination of the particles. This can de confirmsd by the ultimate
compression -- the appsarance of e free voluse-centered lattice.

We d1d not investigate the important problem of the simultaneous : .

B influence of monobasic etress and temperature upon elastic characteristics
v . and stabllity of the lattice. This problem will be investigated

separately.
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Figure 1.  The relation batween the ] Figure 2. Form_afion of a
paramstere of ‘equilibrium c? the volume-centered lattios

‘ lmi:e. Volume-centerad lattice iz from a face-centered ons.
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E.sm 3. The relation between '

parumeters of equilitriva of Figure k. Coefficient of
the lattice. The volume-centered elasticity as a function of
lattice 1s stable. stress (p/ty).
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